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ABSTRACT

A numerical technique for calculating the optimal control for a class of

systems and constraints is described. Nonlinear, time-varying deterministic

systems subject to hard state space and hard control space constraints are con-

sidered. Three numerical procedures are developed to perform the optimization.

A technique for the minimization of a scalar function of a vector variable is

described where the components of the vector are constrained by upper and lower

bounds. This minimization procedure is incorporated in a method of constraint

mapping which maps the state space constraints into the control space. To

improve convergence properties of the optimization procedure the notion of a

pseudo performance index is introduced. Initial and final states may be partial-

ly or completely specified. Any unspecified initial or final state vector

components are optimally selected.

An iterative technique for the optimization is demonstrated which i

gener~ally converges to a local minimum of the performance index. The method

uses the direct approach to optimization and is very efficient computationally.

Examples of space vehicle trajectory optimization problems are given.
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1. PERSPECTIVE - I

1.1 Recent Trends in Modern System Theory

For the purpose of this work, we will consider that modern system theory

has evolved from the 1950's when the state variable formulation of control

1
problems was introduced and studied by Bellman . Of coursewe recognize that

the state variable formalism is not new; only its application to control problems

is recent. This is a convenient, if somewhat artificial, beginning.

As noted elsewhere2.3 the use of the modern theory enables the designer

to consider his problem in the time domain with the physical time domain con-

straints as an integral part of the problem formulation. The so-called "cut-

and-try" techniques of the classical control theory are no longer necessary.

However, a certain new type of ':cut-and-try* design is introduced. This new

scheme is systematized to the extent that algorithms are created which assure

that each succeeding try is better than the previous one, a process hich we

call monotone iteration. The most significant property of monotone iterative!

procedures is that by using them we are always assured of doing better if we

persist. That is, if n iterations have produced a certain result, then the

(n + 1)st iteration will produce a "better" result. The method of solution to

be described in Chapter 3 is an example of such monotone iteration.

The term "better" is given a precise meaning by the introduction of a

mathematical performance index. This is a functional which represents how well

the system is doing. Generally we ask for this functional to be taken to an

extreme value. Without loss of generality, we will henceforth assume that it

is to be minimized. Now, in many systems an appropriate input (a time function)

can be generated which will drive the system through its state space (in time)

in such a manner that the performance index is indeed minimized. However, in
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many systems, such control (i.e.) such an input) would also lead to gross mis-

behavior of the system. This may arise from saturation nonlinearities,,oscil-

latory modes of operation, excessive fuel requirements, excessive aerodynamic

pressures, velocity, etc. It is for such reasons that many physically meaning-

ful problems involve constraints on the state of the system and the inputs to

the system. We say that, in order to avoid certain undesirable behavior of the

system, state space constraints and control space constraints are imposed.

The evolution of modern system theory has passed through many different

phases of development during which time a variety of'systems and constraints

have been considered. It is hardly necessary here to discuss these systems

and constraints which have been considered in the past. It-is sufficient to

point out that the work described in these pages is the subject o.f a large

"amount of current effort by system theorists and mathematicians.

The work described in these pages is an engineering solution to the opti-

mal control problem for totally constrained (i.e., state and control space

hard constraints) invertible systems.. The'constraints considered are practical

ones. The method of solution is computationally feasible and completely auto-

matic in that, no decisions.bythe c6mputer operator are required du.ring the

course of the computation.

' Section 1.2 contrasts this method of solution with others recently pro-

posed..

"1.2 State Space Constraints

In the evolution.of modern system theory mentioned above the first con-

straints to be considered were control space constraints. These typically re-

quired the control vector to be containedin a closed region of the control.

space. Until 1959 there was no mention of state space constraints. This was

probably true for two reasons. The control space constraints provided suffi-
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ciently complicated analytical difficulties by themselves and also, there were

not sufficient results published to attract attention to certain analytical re-

sults which proved to be physically unrealizable. In 1959, a fundamental paper

by Gamkrelidze considered the problem of state variable constraints in some

detail. His paper delineates a set of necessary conditions which a system

trajectory and control must satisfy in order to be optimal when the state of

the system is restricted to lie in a closed-region and the control is also re-

stricted to lie in a closed region. It is shown that those portions of the

optimal trajectory which fall entirely within the closed region in the state

space must satisfy the maximum principle. A necessary condition is also proven

for the portions of the trajectory which lie entirely on the boundary of the

closed region in the state space. Further, a jump condition is defined wh~ich

is necessarily satisfied by every pair of adjoining sections of an optimal tra-

jectory, one of which lies in the interior and the other on the boundary of

this closed region. These results give certain analytical properties of opti-

mal trajectories but do not. seem to yield easily to computational solution of

26
optimal programming problems. Berkovitz obtained the same results using the

calculus of variations.

In 1961, Chang determined a simpler set of necessary conditions for the

special case of fixed time optimal control with free end'point. Moreover, he

showed that for linear systems, if the restricted regions in the state.space

and in the control space are convex, the condition stated is also sufficient.

This condition also holds for minimal time control between two fixed points.

Again, the main emphasis in Chang's paper is to derive necessary (and sometimes

sufficient) conditions with little regard for computational feasibility.

4
*Recently rewritten
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Some consideration of the computational aspects of optimal programming

6
problems was given in Breakwell's paper in 1959. However, in 1961, several

papers appeared which seriously considered the computational aspects of the

optimization problem. Some of these did not consider any state space or control

space constraints ; some considered only control space constraints9 ; some

10
considered only state space constraints ; and some considered'both state and

11 12
control space constraints In July 1962, Dreyfus published a paper which

summarized his earlier work and gave some numerical results and discussion of

a computational technique for the totally constrained problem. He was inter-

ested in a single, time independent constraint on the state variables and a

scalar control variable of a more'general type than Gamkrelidze considered.

Dreyfus derives the computational procedure through use of a dynamic program-

ming formulation of the problem. In this way he obtains expressions for incre-

mental improvements in the control program at each step in the iteration.

Another scheme which has gained wide acceptance falls in the general

category of gradient techniqueso Kelly1 was an early advocate of gradient

methods applied to optimal programming problems..

The two most significant results dealing with the topic of the present

work are due to Ho and Brentani15 and Denham and Bryson16 both of which appear-

15
ed in November 1962. In the paper by Ho and Brentani ' fixed time problems

are considered with hard inequality constraints either in the state space or

the control space. They note that considerable difficulty is encountered for

non-linear systems using their method. Also, the restriction to either state

or control space constraints is a significant one. On the other hand, Denham

16
and Bryson , considered general state and control space constraints with a

single inequality constraint and a scalar control variable. Their method is

essentially one of steepest descent. A striking disadvantage of their approach
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is that complicated on-line calculations and decisions by the researcher are

17
required during computation They consider free end points and free final

time problems as well as those mentioned above.

It is well to note exactly the class of problems being solved in the present

work in order to place it among the efforts mentioned above. Here we consider

non-linear, time-varying, deterministic systems which are invertible (to be

defined later). The constraints are simultaneously imposed in the state and

control spaces and are hard inequality constraints. The performance index is a

'general function of the state and the control over a prescribed time interval.

In general, both the state and control variables will be vectors. The technique

to. be described is a gradient-type method based on two principles. First, a

mapping is defined which collects all state and control space constraints into

* Secndly,18
the control space Secondly, a minimization technique is used to successively

select 'controls which reduce the performance in~W.

It would appear that this method and that of Denham and Bryson are competi-

tive and should, in the future, be carefully compared. The method of-this work-

is direct , whereas most of the other authors have concentrated on indirect

techniques. In the opinion of the author, there has not been conclusive evi-

dence that one scheme is better than the other for all problems. Even so, only

little work has 'been done on direct methods of solution. It geemfs that, at

this stage of technology, we cannot exclude either approach.

28A recent publication of Friedland gives some evidence that several compu-

tational techniques for nonlinear programming are currently being compared in a

unified study. It is felt that work such as this is necessary to effectively

us'e appropriate techniques for specific problems.

*This is a generalization of a result published earlier by the author .

**A direct method depends on successive comparisons of a function. An indirect

method seeks a minimum by means of a necessary condition for the minimum1 4 .
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2. THE PROBLEM

In what follows, capital Roman letters will denote matrices whose dimensions

will be obvious from the text. Small underlined Roman letters will denote

vectors. Again, dimensions will be obvious. Any deviations from this notation

will be clearly indicated in the text.

An expression involving functions and functionals will be accompanied by a

statement indicating its domain of definition. For example:

x(t) = f[x(t)]; t E (O,T] (2.0.1)

is an equation relating a vector function i(t) and a vector functional f defined

on x(t) for t E (O,T] where ( and ] have their usual meanings. The equation

f(t) f [x(t)] (2.0.2)

is.an expression involving vectors of numbers. For the discrete case, a similar

distinction is made

x(k + A) = f[x(k), u(k), A]; k 1, 2, ... , K. (2.0.3)

and

x(k A) = f[x(k), u(k), A] (2.0.4)

Only stationary systems will be considered since time varying systems of

equations can be written as stationary ones by introduction of another state

2
variable..
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2.1 Definition of Invertible Systems

If

)(t) = f[ x(t), u(t)]; t E[O,T] (2.1.1T)

we say that (2.1.11) is invertible if there exists a single valued vector

function g such that

u(t) = g[;(t), x(t)]; t E[O,T] (2.1.2')

Since we are dealing with a problem of numerical solution of optimization

problems, we immediately turn our attention to the discrete version of (2.1.1')

and (2.1.2'), namely

x(k + A) =f_[x(k), u(k), A]; k= 1, 2, ... , K. (2.1.1)

and

u(k) =g[x(k + A), x(k), A]; k 1i 2, ... , K (2.1.2)

Two general classes of invertible systems may be defined as follows.

1. Class a invertible systems.

This class is made up of two subclasses:

a) Class CI (linear control) invertible systems:

x(k + A) f[x(k), A] + B[x(k), A] u(k); k = 1, 2, ... , K (2.1.3)
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where, x is an n-vector and u is an m-vector, B is an n x m matrix with the typi-

cal element

b.ij b ij x(k), A]; k • 1, 2, ... , K (2.1.4)

Moreover, it is required that the matrix B have rank m. This requirement is

necessary to insure the independence of the control variables'.

b) Class L2 (non-linear diagonal control) invertible systems:

x(k + A) f[x(k), A] + B[x(k), A] H[u(k)]; k 1, 2, .. , K (2.1.5)

where B is as described for class Q invertible systems and H is an m x m

diagonal matrix with the following typical elements each .of which has an inverse:

[lu. (k)] i j
h ; k 1, 2, ... I K (2.1.6)

0i i j

2. Class P invertible systems:

This class contains all invertible systems not contained in class a.

The development to follow will explain in detail a procedure for optimi-

zation of systems which are class a invertible. The results are immediately1

extended to class a2 and P invertible systems.

2.2 Statement of the Probiem

Given the following class aI invertible system

=(t) •fx(t)] + B[x(t) ] u(t) (2.2.1)
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determine

u(t)

such that

F[x(t), u(t), ir] (2.2.2)

is minimized and

x-(t) < x(t) < x (t) (2.2.3)

and

u(t) < u(t) < u+(t) (2.2.4)

all for t E[OJT]. Statements such as (2.2.3) signify a component by component

relationship between vectors.

We will assume that artificial constraints will be imposed in the absence

of any components of (2.2.3) or (2.2.4). These will be of the form

-L < x(t) < + L; - L < u(t) < + L)

where L is a vector of suitably large positive numbers.



10

The terms of this problem statement are defined below for t E[O,T].

x(t) (n-dimensional) state vector

xM(t) (n-dimensional) state constraint vectors

u(t) (m-dimensional) control vector

u+(t) (m-dimensional) control constraint vectors

f (n-dimensional) system vector

B (n x m dimensional) interaction matrix

F performance functional

A typical example of the-performance functional is

T n m n
F [a • xr(t) + b i-l 2 uS(t)] dt + p i& x.(T)I

0

The control vector u (t); t E[0,T], which satisfies (2.2.2) subject to

(2.2.1), (2.2.3), (2.2.4) is called the globally optimum control vector. If

u'(t); t E[0,T], is such that, for all 6u(t); t E[0,T], F[x'(t), u'(t), TI <

F[x'(t) + _x(t), u'(t) + 5u(t), T]; t E ['0,OT], then u'(t) is a locally optimum.

control vector. Note that the perturbed controls and states must satisfy (2.2.3)

and (2.2.4) and 6u.(t) are small.

The techniques of this study determine a locally optimum control vector.

To find the globally optimum control vector, we simply select the 'best' locally

optimum one. By this we mean that if lu(t), 2u(t),..., k u(t); t E[OT] are

locally optimal, then there exists aj such that for all i 9 j,

F[Jx(t), u(t), T] < F[ix(t), u(t), T]; t E [O,T].
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We call Ju(t); t E[OT] the globally optimal control vector. Since the number

of locally optimal control vectors may be very large, generally, as in this

work, one is satisfied to find a locally optimal control vector. Moreover,

in many problems, physical reasoning shows that there is only one locally

optimal control vector and therefore it is globally optimal.
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3. A SOLUTION

3.l Introduction to Solution

The method of solution to be described has two main subdivisions. First,

the state space constraints at time k + 1 are mapped into the control space at

time k. These constraints along with the control space constraints at time k,

determine the subspace of the control space which contains all admissible sets

of controls at time k. This is the constraint mapping procedure. Next, the

control at time k is selected which minimizes a pseudo performance index. At

the end of a major iteration it will be shown that no control or state space

constraints are violated and that the performance index originally specified

(in (2.2.2)) is strictly smaller than it was at the end of the previous major

iteration.

The present chapter contains the details of the method outlined'above0

First we consider the constraint mapping procedure in some detail, then discuss

the particularly important one step map' which will prove useful later. Next

the method of adaptive constrained descent is described. This technique is used

both for the mapping and later for the optimization. A brief discussion of the

augmented performance index follows. The chapter concludes with a detailed

description of the overall optimization procedure using the schemes described

earlier in the chapter.

As remarked earlier, this work is especially written for class C in-

vertible systems as explained in Chapter Two.

3.2 Constraint Mapping

It is convenient to define several sets in the space of real numbers. The

notation follows,

In the state space, Xi is the set of all state variables x.(k) at time k..Sk. 2.
1

"X.i is the set of all state variables x.(k) at time k. + 1. Of
k 0) 1
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course, the set of all x.(k) may be ordered and assembled into a state vector3

x(k) at time k. The underline signifies a vector whose components are x.(k).
3

In the control space we have the following sets to be defined below: luj
Uk,

2kU j3 U j Uk Uk. In general the subscript indicates the time at which the,k k

set is defined (i.e., U is the set U i at time k = 1). Thus, for example,

• * j ,th *u,(k) E Uk is the j element of a particular control vector u(k) at time k.k

is the null set. R is the real line. A bar over a set (e.g., U k) denotes

its complement. The sets are defined in terms of the problem statement of

(2.2.1), (2.2.2), (2.2.3), and (2.2.4) for j = 1, 2, ... , m.

The technique described below shows how to construct a set U so that
k

k k*

33

uj(k) E 3Uk implies violation of (2.2.1), (2.2.3). A control

variable selected from 3U- is sufficient to drive

the system outside the allowable region in the

state space (at time k + 1).

u.(k) E U implies satisfaction of (2.2.4). The set so de-

fined is the connected set on R whose boundaries

are u+(k) and u,(k) in (2.2.4).3 3

1' j j IT

k k

u 1(k) E ?I implies satisfaction of (2.2.1), (2.2.3). A control

j -k °t

variable selected from itU necessarily drives the
k

system into an allowable state at time k + 1, where

the allowable states are defined by (2.2.3).
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j 1 ' U)2 i
U - k k

uW(k) f Uk implies violation of (2.2.1), (2.2.3), and/or (2.2.4).
k

In order to drive the system into an allowable (defined

by (2,2.3)) state at time k + 1, it is necessary to

*Uj
select a control from *k.

** j =lT•jN 2 Ui

k k kk

u.(k) E U implies satisfaction of (2.2.1), (2.2.3), (2.2.4).
j k

In order to drive the system into an allowable state

at time k + 1, it is necessary and sufficient to select

** j
a control from Uk°

It is clear that all these sets are compact.

**

The set Uk is the set of all controls which are candidates for the
k

"optimal" control. It is this set which we would like to calculate. It will

be shown below that *' jU is a function of the state and the control at time k.

k

The conjecture is made that for general systems, or even for general invertible

systems Uk cannot be calculated. An example is given which shows how to calcu-

late **U in a special case. A set Uk. the construction of which will be ex-
kk

plained, is a function of the present state of the system and, in general,

appears to be the smallest set which can be easily calculated which contains the

optimal control. This question of a "best" *Ui is a subject which deserves
k

further attention. It is not discussed in this work.

The calculation of Uk5 called a one step map is easily performed for the

class a invertible systems by determining its endpoints u- (k). This, it will
13
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be shown, only requires examination of x-(k + 1). For general invertible systems
D

the space X must be searched.
1 1u*

The calculation of Uk proceeds as follows:
Uk

1

1. Calculate 1U. Given x(:)., search x.(k. + 1) suchthat xj(k. + 1) <
k. i~1

+
x.(ki + 1) < x (k. + 1) until the u.(k.) of the inverted system reaches its

maximum and minimum values. These boundaries define a compact, connected set

1

2j + 2j
2. Calculate U k u.(k.) and u-(k.) are the end points of U k on R.

1 1
3. Calculate U Uk n

k kk. k. *
1 1 1 1

In general, the searching operation of step 1 above will requirean iterative

numerical procedure. However, if the inverted system can be represented by

ui (k) = xi (k + 1) - gi(x(k)) i = 1, 2, ... 1 m
1k = 1, 2, ... I K

then u.(k) will occur when x.(k + 1) = x.(k + 1) and u.(k) will occur when
3. 1 1 1

xi (k + 1) = x (k + 1) so the searching procedure is unnecessary for the case of

(3.2.1). It might be noted that most systems can be represented as in (3.2.1).

For the general case, a numerical procedure has been developed to perform

the necessary boundary mapping. A description of this procedure, the method of

adaptive constrained descent is given in the next section.

In light of the preceding discussion of constraint mapping, let us carefully

examine its application to class 1 invertible systems. It is shown later that1

we are interested in the one step map problem which yields the set Uk. For
k
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the ( -type systems

x[k + A] f [x(k), A] + B[x(k), A) u(k) (3.2.2)

For a given state x(k) we can write (3.3.2) as

x[k + A] = f[x(k), A] + v(k) (3.2.3)

where

v(k) = B[x(k), A] u(k) (3.2.4)

For independent controls u.(k) this transformation always has an inverse and

thus u(k) can be determined from v(k). Equation (3,2.3) is precisely the form

desired for the one step mapping.

For C 2 -type systems

x[k + A] f[x(k), A] + B[x(k), A] H[u(k)] (3.2.5)

where H is the diagonal matrix described earlier. The requirement here, for the

successful application of the one step map technique is that h ii[ui (k)] have an

inverse. The notion of linear independence is not present here and it is diffi-

cult to formulate a set of physical requirements on a system for this condition

to exist.

For P-type systems, again, it is difficult, if not impossible, to discuss

physical interpretations of the invertible nature of non-linear control systems.

A thorough study of this problem may very well lead to useful results. For
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the purpose of the present study, however, such problems are not considered.

This section is concluded by a discussion of the existence of Uk. It
k

was observed earlier that we could find a Uk which is a function of x(k). If
k

there were a **Uk then it would be a function of x(k) and u(k). To show this,
k

consider the following general inverted system

u (k) = x (k + 1) -g 1i(k)

u 2(k) = x 2(k + 1) - g2 [x(k)]
2.. •(3.2.6)

um(k) = Xm (k + 1) - g m[x(k)]

If we selected u-(k) only on the basis of x-(k + 1) and 2(k), it is not clear

that this would ensure that x-(k + 1) < x(k + 1) < x (k + 1). Counterexamples

** +

are easily found to show thatu in fact, +-(k) must be selected on the basis of

+
more information than x-(k + 1). Let us suppose that because of coupling be-

tween equations of (3.2.6) the selection of *u-(k) depends on x-(k + 1) as
+

well as x-(k + 1). Clearly x2(k + 1) depends on u2(k) also. Therefore, it is
** +:.

easily seen that u-(k) is a function of x(k) and u(k). However, u(k) is as1 **

yet unknown. For each u(k), (k) will change (as will the other u-(k)).
"- 1 1

So, in general, it is impossible to find u-(k) and therefore, for computational

purposes, it does not exist. There are special cases for which Uk does
.9 k

exist and is equal to UJ as determined by the construction described earlier.
k

Consider a ldinear. system represented as shown below;

x(k + 1) = A(k) x(k) + U(k); k = 1, 2, .. , K (3.2.7)
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where

A(k) = 0 1 0 0

0 0 1 .. . 0

0 I

a (k) a (k)------ - a (k)

nl n2 nn

U T(k) = [0 0 ---- 0 u(k)]

The system (3.2.7) has a single state variable constraint xn(k) x n(k) K x (k)

and a constraint on the single control u-(k) < u(k) < u +(k). Because the only

state variable constraint is on the one variable with a direct input, and since

there are no other inputs, no selection of U(k) can drive the variables x.(k + 1),
1

i / n into inadmissible regions (for inadmissible regions for these variables

do not exist). Therefore, the procedure for determining Uk will give Uk
k~ k*

This is a special case, to be sure. However, it does show an interesting

property of systems which correspond to all-pole systems in the continuous,

stationary case. This is not the most general such system, but is satisfactory

for the purpose of exhibiting a system for which the U which we know how to
Uk

** j
calculate is identical to Uk

k'

The fact that U does not exist in general, enhances the value of Uk
Uk k'

If we consider the optimization process to be a search of admissible controls,

the existence and use of Uk reduces the space which must be searched.

3.3 Adaptive Constrained Descent

The method of adaptive constrained descent is one of the so-called direct

i i
methods of minimization. The problem is to determine the minimum Z = f(x)
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such that x < x < x+ where f is a scalar function of its vector argument.

We let

0Z min Z f(x°)
0< x° < x+

The technique generates a set of x such that Zi > Z i+l. Thus the sequence of

Zi is monotonically decreasing. If, for i = P the technique cannot produce

P+l p p o p o
Z KZ , then Z = Z and x = x , the minimizing value of x or at least a sad-

dle point of f(x).

The minimization proceeds down one variable at a time within the restricted

region. Each variable is changed until the sensitivity of Z with respect to

that variable has been sufficiently reduced. The amount by which the j-th

variable is changed at each step is E.. Initially E. is set to an appropriate

value. Experience shows that for many problems E. = (x+ - x )/3 is a reason-

able value to start with. The minimization on one variable is continued until

the sensitivity of Z with respect to this variable is sufficiently reduced.

During this minimization on one (the j-th) variable, E. is reduced to permit

partial covergence to the minimum in one variable. When the sensitivity of Z

with respect to this variable is reduced below a cut-off value (minor cycle

sensitivity criterion) a minor cycle is complete. If x is an n-vector, n minor

cycles constitute a major cycle.

18
The details of the method may be found in Appendix A and elsewhere

3.4 A Pseudo Performance Index

For numerical purposes, it may be helpful to introduce an augmented

performance index to account for state space violations which occur at "future"

times. This idea will become clear later. We introduce the augmented per-

formance index H[x(k), u(k), k] defined as the "cost" of going from x(k)
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to x(K).

H[x(k), u(k), k] = F[x(k), u(k), K] + G[x(k)]

G[x(k)] is the penalty incurred for violating the state space constraints.

ýWe will insure that G[x(k)] = 0 at the conclusion of the iterative process.)

A convenient form for G[x(k)]: is

n K - { ,2

G[x(k)] =T Fk- k_ [xi(k) - x+(k)] + 6[x(k) - x(k)] {(k) - x*(k)

where

, x7(k) + x (k)

z 2

and

1a>O0

Unless otherwise mentioned we use k = 1. The minimum of F which is selected
ik

may depend on X.ik

Using the one step mapping procedure we can ensure that the state space

constraints at one instant will not be violated. G[x(k)] will account for those

at later instants which are violated. At any particular time ki., we can be sure

that there are no state or corntrol space constraint violations for k < k , and

at k. = K, we can be sure there are no state space constraints violated at

any time.
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3.5 Direct Fixed-Time Optimization of Invertible Systems

Let us assume that we have no prior knowledge of the optimal control and

that, as an alternative to prior knowledge1 we have selected u. (k) = I; i 1,1

2, ..', m and k = l, 2,..* K. Moreover, with this "control", the value

0 0 0
of the performance index is H = F + °G where H and G were defined in the

previous section. F was defined in (2.2,2). The optimization procedure is

made up of minor iterations and major iterations, If there are K time

instants between k = 1 and k = K.3  then one starting iteration and K minor

iterations comprise one major iteration,

The starting iteration is the search for "best" initial conditions on the

state variables. It is simply a search, using the adaptive constrained descent

procedure, over the set of starting values whose boundaries are x+(1) and a

selection of the one which minimizes the augmented performance index. The de-

tails of the search are the same as for any of the control vectors, for example

u(l), and are given below.

The minor iteration has several parts. Upon entering a minor iteration

at time k, the following information is known: _(X),_x+(k + 1), u +(k),

H[x(k), u(k), k]. Moreover we have constructed the control up to time k so

that G[x(x)] G[x(k)],which means .that there are no:state space constraint

violations before time k. With this information the iteration proceeds.

1. i •

2. Use the one step mapping technique to determine U .

3. Select a u.(k) E Uk
1 k* +

4. Check to see if x(k + 1) K x(k + 1) K x+(k + 1). That is,

check to see if u i(k)E U k. If this is true go to 5. If not,

go to 3.
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5. Compute H[x(k), u(k), k]. Continue selecting ui(k) E **U

until H[x(k), u(k), k] is minimized (Using-the method of

Section 3.3).

6. If i ; n, increase i by one and go to 2. If i = n, keep a

record of the current H[x(k), u(k), k] and compare it with

previous values. If no significant decrease has occurred,

this completes the minor iteration. If a significant de-

crease has occurred1 go to 1.

Thus, at the end of a minor iteration at time k, u(k) has been set so that

each u.(k) E U1, no state space constraints at time k + 1 are violated
•* i(therefore, all u.(k) E Uk i = 1, 2; ... , m), and u(k) is, in some sense,

"best" to date. Moreover, at the end of the minor iteration the states and con-

trols for all previous instants have been calculated and stored. Also, the

portion of H[x(l), u(l), 1] which depends on these states and controls has been

calculated and stored. Thus, the calculation time is shortened as the calcu-

lation proceeds.

.A major iteration consists of one starting iteration and K minor iterations

and thus represents a complete pass through the controls u(k), k = 1, 21 ... , K.

(See Appendix B.)

A discussion of the stability of the method proposed above and its ability

to converge to a critical point of F is given here. First we show a source of

instability of this technique. Suppose that F = OF at the end of a major

iteration. The next minor iteration will select a set of vector components

ui(l), i = 1)2,... I m, which reduces the performance index to 1F where 1F < 0 F.

This new control u(1) in general will change the state of the system x(2),

x(3) "..., x(K). To calculate u(2), for example, we need the new value of
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X(2) to determine U* j=1)2,... m. It is possible that the set U does not

contain the former "best estimate" for u (2) and so the old u.(2) cannot be3 3

selected as an admissible control. This is true because the use of u.(2)

2J
would violate some constraint on x 1 (3), or else is not in U2. (This follows

! * J
from the definition of U2.) Therefore it is possible that we cannot find

T .() *j 2 2F 1

uU(2) E U which results in a F such that F < F and in this sense thei 2

procedure is not monotonic. The source of difficulty here is large differences

.~*j
in the contents of successive U2. These large changes may either arise from(2

discontinulties in the derivatives of the state vector x(k) or from large'

changes in successive values of the input u(l). In most physical systems

x(k) is continuous and therefore this generally will not. be the source of

difficulty. The most frequent cause of the trouble will be successive values

of u(l) which are considerably different. As observed in the examples of

Chapter Four, the first major iteration typically results in a value for the

performance index which is well over ninety percent of its 'optimum value

and values for u(k), k = 1, 2, ... , K-1, which are close' to their optimum

values. Successive changes in u(k) are generally very small. Thus successive

Ukj generally differ by very little and thus this non-monotone character of

the iteration seldom is observed. This is especially true if G is comparable

to F in rMagnitude so future state space constraints are "strongly" considered

as each component of u(k) is selected. For the examples studied by the

author, no non-monotonic behavior was observed.

If successive passes through all variables produce no further decrease

in H, its value at the end of a major iteration, that is F[x(k), u(k), K],

is at a critical point (not a maximum) subject to the constraints on the

states and controls. If the function F has saddle point behavior in the m

times (K-l) variables ui(k) , i = 1, 2, ... , n; k = 1, 2, .. , K-1, the
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critical point located may not be a minimum. This is clear since the 'one

at a time' search procedure cannot distinguish certain saddle points from

minima. If the performance index F has no saddle point behavior, the point

of inflection located is a local minimum.

Now that the method has been described it should be clear why we are re-

stricted to fixed-time problems. The constraints are fixed in time initially

and the system is forced to move through the restricted region of the state

space. It is not clear at this time whether or not minimum time problems (for

example) could be handled using this technique.

A question which remains to be answered concerns the ability to satisfy

the state space constraints at the next instant. It may occur that at a parti-

cular instant k, the U which we have described earlier is empty. This may
k

occur for various reasons. For instance, there may be no solution to the

problem (e.g., because of inconsistent specifications). It may be that be-

cause the current x(k) is not optimum, the U to be calculated is empty.

Work remains to be done to determine whether or not the problem has a solution

and, if it does, to develop a technique to account' ftr.this particulartimne

instant which seems to have no admissible controls.



4. EXAMPLES

In this chapter the method described earlier is applied to three specific

problems. The first problem is deliberately chosen to be simple and it is easy

to follow the details of the method. The problem is stated as a discrete one

in order to eliminate the necessity for considering the relationship between

differential and-difference equations. A discussion of such matters may be

19
found elsewhere

The second and third examples are problems described elsewhere but not

solved numerically. A detailed discussion of the origin and significance of

the problems and their solution are to be found in Sections 4.3 and 4.4.

The examples to be described were programmed on the Control Data Corporation

1604 in the Fortran compiler language. The program is written so any problem

of the type considered (i.e., invertible systems) can be run by changing only

three subprograms. In these subprograms. the system, the inverted system and

the performance index are described. Data to the program includes range of

initial conditions, state and control space constraints, final time and step

size and a list of parameters which may be used as desired.

A block diagram of the program is shown in Appendix B. The terminology

of the flow chart is the same as in Chapter Three.

Several observations about the examples are in order., First, all curves

are drawn with continuous lines joining data points. This is to help visualize

the results only. Actually data only exists at a discrete set of points which

are clearly marked on each sheet,

The trajectory problems show a very strong sensitivity to initial condi-

tions. For this reason, the ability to optimize initial conditions as well

as controls is of fundamental importance. In practice it is frequently true

that initial conditions may be selected within a certain range. The trajectory
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examples indicate that substantial advantages exist by careful choice of these

initial conditions.

One point of significance is the effect of multipliers on the performance

index. In the examples shown in this chapter terminal constraints are handled

by means of penalty functions, i.e., positive semi-definite functions of the

difference between actual and desired final states. Each terminal constraint

is weighted according to its importance relative to fuel cost, thrust limitations,

vehicle lifetime, etc. Proper selection of the weighting factors can be of

considerable importance in obtaining realistic answers. Much more should be

said about these considerations. However, this is not the place for it. It is

sufficient to say that a poor choice of weights will preclude a realistic solu-

tion of these optimization problems.

4.1 Example One - A Discrete Linear System

Figure 4.1-1 shows a block diagram of the system under consideration. Its

state vector representation is given below:

x (k + 1) = -x (k) + x (k) + u (k)
1 1 2 1

x 2(k + 1) = +x (k) - x 2(k) + u 2(k) (4.1.1)

k =1, 2, ... , 10

State and control space constraints shown in Figure 4.1-2 are

x(l) = 1

- 1 < x(k) < + 1 (4.1.2)

- 1 < u(k) < + 1
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U'

U2

I

Figare 4.1-1. Discrete System for Example One
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X (k) X (k)l

2

Figure 4.1-2. State and Control Space Constraints for Example One
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where ifl represents a two-vector both of whose elements are,+l or -1, re-

spectively.

The performance index chosen for this problem is:

2 9 2 9
x2(k) + u (k)+ M I X (10- .5 (4.1.3)

j=l k=2 x j=l k=l k I

where M is a constant chosen to drive x1 (10) sufficiently close to .5.

Initial conditions selected are x (1) = x 2(1) = +1. Initially the optimal

control is guessed to be u(l) = 0, k = l,2..., 10.

With M = 1.0, Figures 4.2-3 and 4.2-4 show the state variables at the end

of certain major iterations. Figures 4.2-5 and 4.2-6 show the control variables

for certain major iterations.

The value of the performance index shown in Figure 4.2-7 is seen to decrease

monotonically with the number of major iterations as explained in Chapter Three,

If we consider (just for illustration) that its final value is .115, then it

is within .03 of its final value after just one iteration. That is, in one

iteration it has decreased more than 99.999% of the total denrease to be ex-

pected. It might be noted that many numerical procedures converge extremely

quickly during the first few iterations, then quite slowly after that. Using

the FORTRAN program mentioned above, each (major) iteration required about ten

seconds on the CDC 1604.

One other appropriate remark involves the results shown in Figures 4,1-3

and 4.1-4. There at the zeroth iteration we note that state space constraints

are violated. This results from certain of the controls being inadmissible.

In the terminology of Chapter Three, certain of the "first guess" controls are

** j
not in Uk although it is:seen that they do belong to 2 U k The method assures

that this will not occur for any other major iteration.
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Figure 4.1-5. (Example One) Convergence to Optimal Control u (k) vs. Time
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Figure 4.1-7. (Example One) Performance Ind:ex vs. Major Iteration Number
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4.2 Example Two - A Midcourse Guidance Problem

In this example the problem of interorbit transfer or more commonly, the

midcourse guidance problem , is examined. Consider the equations of motion of

the center of mass of a vehicle moving in two dimensions in the earth's gravi-

tational field. The geometry of this two-dimensional, restricted two-body

problem is shown in Figure 4.2-1 The equations follow:

r -
1 2

U

"r 2 N 12 1 ri2 - -2 + -m
r1

(4.2.1)

e1 =02

r2'2 U2

2 rI mr 1

where

14 2
N = GM= 10 nm2/Kg.

G = universal gravitational constant

M = mass of the earth

3
m = mass of vehicle = 10 Kg.

To use the notation of the other examples we define rI = Xi. r2 = x2)

0 1 x = x We will consider that the vehicle is to be placed into an
1 3 ) 2= 4'

earth orbit which takes it through a certain "launching" region in space. From

the optimal point (to be selected) in this "launching" region the vehicle is to

be transferred to a specified. point in a different orbit in a given length of

time. Minimum fuel is to be used and each rocket has a specified maximum thrust,
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U2  U

0

Figure 4.2-1. Geometry for Example Two
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The main thruster is constrained to exert force only in the +r direction. The

transverse rockets exert force in the •0 directions. We are to determine the

optimum "launch" point and control program subject to certain constraints.

Specifically, the constraints are given below.

0 < u < 500
-1-

(4.2.2)

-200 u2<+ 200

960
We want to minimize (u (t) + u2() dt where force is in newtons, time in

seconds, length in meters, mass in kilograms, and angles in radians. The ini-

tial state is given by

X(O) < x(0) < x+ (0)

where

x (0 10 x +(0) 1

The final desired state is specified by only two components of the state vector

x (960) = lo5xl07, x 3 (960) = 1.0 and the other components are free. Figures
13

4.2-2 and 4.2-3 show the optimum trajectory and Figure 4.2-4 shows the optimum

control. (Strictly of course these are only close to the optimal control. This

is clear by examining Figure 4.2-5.) For this problem, relatively little con-

trol effort is required. The initial conditions which are adjustable have a

pronounced effect on the trajectory. With a properly selected initial state,

the vehicle requires only little control effort.
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Figure 4.2-2. (Example Two) Radial Distance vs. Time
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Figure 4.2-5 shows the behavior of the performance index for this problem.

This figure exhibits the rapid 'convergence' properties mentioned in connection

with Example One.

The performance index used for this problem was

F .001 ~960 (u 2tM + u 2(t)) dt + jx (960) - l.5xlOjl + Ix,(96O) -, 1.01

4.3 Example Three - A Lunar Landing Problem

The problem of landing manned or unmanned vehicles on the lunar surface

is an important one currently being studied. There are several formulations

of the problem, the one here being due to Friedland2 . In Figure 4.3-1 the co-

ordinates r and 0 are defined, r is the distance from the moon's center and

9 is a measure of angular position. As in the previous example we assume two

sets of rockets are mounted on the vehicle, one which exerts force in the +r

direction and a smaller pair to exert thrust in the +0 directions. Since the

vehicle is assumed to be in the vicinity of the moon when this phase of the

flight begins, three basic assumptions are employed in the following derivation.

First it is assumed that the total mass of fuel required for the descent is

small compared to the mass of the vehicle so the vehicle mass may be assumed

constant. The flight time of this phase is small with respect to the moon's

period about the earth (about 1 revolution/28 days) so that Coriolis and centri-

fugal forces arising from rotation of the coordinate system (origin at earth,

rotating with moon) may be neglected. Since r/r" ;is.:vqry small for this phase,
0

terms in r/r 0 of first and higher order will be neglected if compared with unity.

gm' RM. Mm are the lunar gravitational acceleration, radius and mass,

respectively.
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g) R; Me are the earth's gravitational acceleration, radius and mass,

respectively.

v is the escape velocity from the moon's surface (neglecting the earth'se

presence).

1mR /2

v= 2g(Mm)ve = Mgh R---

R
T v! 733 sec., T t/Te

e

2
M R
- - °00842 2
M rn o

R fmf r
Ul • 2 -r = 3.03 W

v m
e

R f6
In8

u2 " m 2 fo = 3 .03 •
V2 m

e

W weight of vehicle on earth.

With these definitions and assumptions we can write the equations of

motion.

1dxl 2 1 KCosx +u
dT ) 2 2(1+ x 3 ) 2 4 1

dx2 2xI x2 K sin x4 u2
-dT x 4 3 1+ x3 +i + x3

dx 3  
(4.3.1)

dT =1

dx4

Fd x2
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where

x is a normalized radial velocity

xI -- 1 is the moon's escape velocity

x2 is a normalized angular velocity

x3 is a normalized radial distance

x 3 0 is one moon radius (denoting the lunar

surface)

x is exactly the angle Oo

The problem solved here used the following constraints,

0 < U (k) < 10.0

-5.0 < u2 (k) < + 5 o0

x3 (k) > 0

-0.2 < x(l) K -0.2
-0. +0.5

-2.0 ~ -2.

24

Z U (k) < 20.0
k:=l 1

24
II u(k) < 50.0

T = 0 corresponds to k 1 1

T = 2.4x733 sec. corresponds to k 25

Time between successive values of k is 73.3 sec. The quantity to be minimized

iS fuel consumption:

24
Z u (k) + ju (k)
k=l 12
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Without state variable
S constraint
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I X (k)Ž 12 a
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Figure 4.3-3. (Example Three) ul(k) vs. Time
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This is a "difficult" problem because of the large initial value of radial

velocity x (0). With no control, it was found that the final value of x was
1 1I

-91., a rather unreasonable number.

The curves of Figure 4.3-2 show the result of using a state variable

constraint x 3 (k) > 0 to prevent the vehicle from 'going under the lunar surface

The control effort required to obtain this trajectory is shown in Figures

4.3-3 and 4.3-4.

Six major iterations of about 45 sec. each were required for each of the

two runs.
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5. PERSPECTIVE - II

5.1 Summary

A numerical technique for calculating the optimal control for a class of

systems and constraints is described. Nonlinear, time-varying deterministic

systems subject to hard state space and hard control space constrains are con-

sidered. Three numerical procedures are developed to perform the optimization.

A technique for the minimization of a scalar function of a vector variable is

described where the variables are constrained by upper and lower bounds. This

minimization procedure is incorporated in a method of constraint mapping which

maps the state space constraints into the control space. To improve convergence

properties of the optimization procedure the notion of a pseudo performance in-

dex is introduced. Initial and final states may be partially or completely

specified. Any unspecified initial or final state vector components are opti-

mally selected.

An iterative technique for the optimization is demonstrated which gener-

ally converges to a local minimum of the performance index. The method uses

the direct approach to optimization and is very efficient computationally.

Examples of space vehicle trajectory optimization problems are given.

5.2 Critique

This thesis is intended as an introduction to a particular approach to

totally constrained optimization problems, The systems which can be optimized

using the techniques given earlier are quite general. However, certain re-

strictions were found to be helpful. The notion of invertible systems is, to

the author t8 knowledge; one which has not been explored before. The question

naturally arises concerning the necessity or desire for studying invertible

systems. It turns out that many common systems currently under study are in-

vertible. Is there something inherent in the structure of invertible systems
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which makes them of particular interest? Maybe they are not of particular inter-

est. It would seem that further effort might be expended in this direction,

The use of direct optimization methods is not "in style" tbese days. It

does not appear that adequate justification for this state of affairs has been

given. ;The contribution of this thesis is based on a direct approach to opti-

mization problems and the author feels that more effect should be devoted to this

area of technology......

To be more specific concerning the results obtained in this thesis, there

is one particular difficulty which may arise. Examples can be found to produce

the following effect. What explanation might be given if, during the optimi-

zation procedure, it was discovered that no control could be found to satisfy

state space constraints? If that happened, there are two possible explanations.

Either the problem as stated has no solution or else the method has led us astray.

We will assume that at time kiV it is determined that there are no admissible

controls. This implies that the state or control space constraints (or both)

are "too tight" at this step in the optimization procedure. If we know (from

physical reasoning, perhaps) that a solution does exist, we must then "invent"

a technique for determining it. A method which could be used is to loosen the

constraints for the initial major iterations, then, as the optimum control is

approached, to tighten them to their correct vlaues, We are still left with the

question of existence if this scheme fails to generate an admissible control.

Without quantitative results it would seem that this constraint tightening scheme

would eliminate this trouble, However, there is much to be done in this con-

nection. One test which might well be performed is to calculate Uk for all j

and k. If we find any given Uk = 4 then this surely means there is no solution

.o* j **j ** i(
because Uk = t implies that U = since U Uk

kk k- k*
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A significant advantage of the method proposed over other computational

schemes is shorter computation time. Running times for the three examples were

given in Chapter Four. These times are less because of inherent computational

advantages of direct methods over indirect ones and also because of the number

of "sampling" intervals considered. Just to mention one aspect of the indirect

i approach, two point boundary value problems are quite costly with respect to

computation time. (Details of the two point boundary value problem may beI 21
found elsewhere .) Using the method of this thesis, many fewer partial de-

j rivations are needed since we do not require travel in the direction of steep-

est descent; many fewer equations need to be integrated because we do not use

adjoint systems, etc. On the other hand, the problem of assured convergence

mentioned above is not to be underestimated. We can only point out that no

j work has been published to date which provides a computationally efficient

method for solution of the nonlinear time-varying problem with many state and

control space constraints. The work of Bryson and Denham16 is the first ef-

fective step in this direction using indirect techniques.

5°3 Comments on Further Engineering Research

j Scattered throughout this thesis are ideas and suggestions for further

work. In this section, some of these ideas are collected. For this work, we

have limited our state space and control space constraints to those of the form

of (2.2.3) and (2.2.4) rather than considering Q[x(k), u(k), k] > 0. It is true

that, in certain cases, the constraints considered here will not be adequate.

I However, it is also true that when these constraints represent meaningful

physical limitations we have demonstrated an optimization technique possessing

unusual computational efficiency. We have traded generality for this, This

trade is called engineering judgment and such judgment should pervade engineer-

ing research,I
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One area of further study should be to discover what engineering approxi-

mations and simplifications can be used to improve existing theoretical results

to make them more practical for "real world" applications. The notion of in-

vertibility may be of some importance for future analysis techniques. The method

proposed should be extended to non-fixed-time problems. More general constraints

may be considered and new results found there.

An engineering constraint which deserves more attention is that of piece-

wise constant controls in continuous systems. The physical nature of some con-

trolling devices indicates that this is an area of no small importance.

The idea of constraint mapping discussed in these pages may be extended,

for example, to performance index mapping in order to permit the actual opti-

mization to take place strictly in the control space. There seems to be much

additional work to be done in this field of mapping for optimization.

A feedback solution to the problem posed in this work would be a welcome

addition to current research results. There is little work in the literature

7 on this subject.

I
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APPENDIX A

Flow Chart for Adaptive Constrained

Descent Minimization Procedure
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APPENDIX B

Flow Chart for Optimization

Program
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ERRATA

1. Pg. 8, Eq. (2.1.5) should be:

±t(k4A) =flx(k),A,] + B[x(k),A] H[u(k)] [1] 12..,

2, Pg. 14, first sentence after description of sets should be: It is clear
1 U * **

that U, U and U are compact.

3, Pg. 16ý Eq. (3.2,5) should be:

x(k+A) = f[x(k),A] + B[x(k),A] H[u(k)] 1]

4C Pg. 21, line 3: k = 1,2,...., K-1. Moreover,

5, Pg. 21, line 7:. and K-1 minDor ----

6. Pg. 22, line 17: and K-1 minor -

7. Pg, 22, line 18: k=l-2,,,,,,

8. Pg, 29, 7th line should be: control is guessed to be u(k) = O, k=li92,..,,•9

9, Pg. 51, line 6: "effect" should be "effort",



DISTRIBUTION LIST AS OF NOVEMBER 7, 1962

Art-SI Aslr-5..0.....0-)h5.t0 2rAD.C
A-r. CA-4803r Arl- Ci-rri Srr

I ill .1A~r h-i R1 .. sS-hI

Aitri AE Mhsr. _h -gr

011~~~1A. 2.0. DBrldg.- 10 AirAr-A. 33

nrlil Argi. - - GO DI-r1s - CM -1ri~ Mr-Ml Airn

S-olorTh. illor- --g- Irrr

ArIi .1 CrI -rri ChAfbr-3rrors rrss Srr r

frrSr r-rit. nor-S sBH-trrM

005Cr-oAo.r-g .. rsAirgh i - 0.5. CC. Sr-ilA-r As5,-0

vr-srsrilrgAl10l3,

A1. A. -. os 345d F-ri~ PACA. Ar-, 77813
S-sisl AbA AtSDlA.rlg Ar-r~ 1 rrAAisrr

itr , MrrrSC"" io MPAC- CrD C--
ACt. MsOr s 1ro AirII r-Irr~

A~~~~~~~~~~ sr-sr.. t"'-.r S1r3 ~rirA-tFArIC r

SiI~~. Oisrsr S-s A..r srrIr-slr A,~i A-r1, A...
Alirt~ ~ ~ ~ ~ ~ -01. IrB.rsoorIS-d515-hOAO

DlI i Iroorl-, AiRrr rslrltSS Is

r-i-lsAS~~rsP.- Ahsss. Sl1-rsis I ABC(SA 030
i SrI Ts.-isr- Ubl, I...lr--. hrg-ASlR,, Air Isr.o -o

CsisirIo. i- si- S1- .~i3 3 -shiiCr

CS~sr.- grosS. CIsrl5 011. A. Ar0-l. 11.
r-ruy. A~s.iir ArgSsi-isSorriiibriro rr rir CIsrA-O

I~r rs..i I MS-gr A ....ro hrs-r Cr-rid, ..y~AC .Nrg ArMsrFrrCrs

Arl. Cr-S2800, CS. Mr-i.r- A.ir S-s'AIi.i= is3.Arrys1i

AS R.ASB-" Elo~r-r-o 5~~lr A. A. Sr- TlhrOClitys

BS-AACAsI~OiiS~sI- 
MS-i- 

5i2 
A. Cl P.sr B r

SRr~id Ari.-Ihir.-r....s

R U.CAIr-IIMAli AS., C,,,srS-so- -

SrAt git r b5 C..., C.h I' ArAS ......r

I IR -hf. a,..- r ... MS-Ml 0I.00
iHoodqS-rs AM Aiolrri CA 26osri-3r27 CrB.r= ACA- .-

.Aisoirs CO. C. C. Aillr. CTiIY.0O

Cr-1., .o .lo .S-- SniiI-r I; Srhr'sl Cior-ir, AllgS r. 1113 osel Rl-llsS

S-o-r~r25, A. A. -A "rt h-sS73. .. At:O -
MS-i: S-AIR.B U Atolt b.- CoA-- rre I AS. nor-sil~oCr U OMCSry,

1 S-soigs -- . C. C 31l-. - l -. It05 -,rrs Ar3A

-1hoAt, isgrls AloC. C. F ... Olsol Mo .rA loiti

AASOS-rsisS M5 C. A. SS11h,:o~s~rro .-. IohoA.sllso

CFrlsro S-iSllsr A, m I. Al
S-iSs S ASCAA nrSSS-SO Alirly AC~i CIiA.

ASS-h Me ASSr Sgi ir
3 

O
D-oI...s d 0 CCIl. .r-MS ii-ss M

-1, .91- 2SFD. r-rR-,sf hA.AoSTr-ooF ttt.
Al-SIs -iso C ~iller CoiSO Fsr CI lS SI - riorio orrrr

ASCII. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l -o~i 4.disAA~- A-O~ A~rC.S~sS3-3n0

I Ch~irfrsr C, C. C.

2- 1,ir ~ SI . C. A.dlC . A. l-. ro

S-sirlsr 35. CAl.-

CorAIC-S. CC-Al sAlh C-,y
S-.rosssIS-R-sS, s D .

iASAIOis 5. Cl .0.1 I. A.


